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Abstract A neighbouring hydroxyl group mediates a diastereoselective protonation in the Birch reduction of 
styrene double bonds. © 1997 Elsevier Science Ltd. 

Birch reduction has been generally applied in the conversion of functionalized aromatic rings to 

cyclohexenones and related cyclohexane derivatives. 1 A selective reduction of the double bond in styrene 

derivatives can furthermore often be achieved in a controlled Birch reduction. Ib'2 In the cases of highly 

substituted double bond, its reduction often proceeds in a trans manner and thus provides an important 

alternative to the transition metal catalyzed cis hydrogenation, lb'2 We now report a pronounced effect of a 

neighbouring hydroxyl group upon the rate and the stereochemical outcome of the Birch reduction of several 

styrene derivatives. Since the Birch reduction of styrenes and metal-ammonia reduction of t~,l~-unsaturated 

ketones are mechanistically related, 1'3 it can be expected that this "neighbouring hydroxyl group effect" will 

also provide the means to establish the desired configuration at the 13-carbon in metal-ammonia reductions of 

ct,13-unsaturated ketones 3 and similar unsaturated systems. 

The rate enhancement in Birch reductions by neighbouring hydroxyl groups and hydroxyl-mediated 

proton addition to the more hindered face of aromatic rings during the reduction have been reported. 1'4 

However, such effects during the reduction of the styrene double bond have not been observed to the best of 

our knowledge. 

Treatment of racemic 1413-ester 15,6 (Scheme 1) with sodium in NH3/THF at -40 °C for 20 minutes 

afforded a complicated mixture from which no significant amount of a pure reduced product could be isolated. 

Epimerization of 1 gave a quantitative yield of the 14a-ester 2, whose structure was determined by X-ray 

crystallography and spectroscopy. 7 Birch reduction of 2 gave an improved product distribution (Table 1, entry 

1). The major product, 3 (70 % yield), possessed the 13-H(8), ct-H(9) configuration 6 (Scheme 1) as established 
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by quantitative homonuclear h o e  differential spectroscopy, s Birch reduction of alcohol 4, obtained by 

LAH reduction of 2, afforded 5 (71% yield), possessing the c~-H(8), ct-H(9) configuration as shown by X-ray 

crystallography and spectroscopy 9 (Scheme 1; Table 1, entry 2). 
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Scheme 1 

Table 1. Birch reduction . . . .  a of various substrates and product dlstnbuUons 

Entry Substrate t(m) Conv.(%) 

1 2 20 92 

2 4 4 100 

3 6 4 100 

Product distribution ° 

ct-H(8) 

ct-H(9) 

71 

0 

ct-H(8) 

13-H(9) 

13-H(8) 

ct-H(9) 

70 

100 0 

~-H(8) 

13-H(9) red/overred, c 

85/15 

85/12 

100/0 

a. A representative reaction procedure: To a solution of the substrate (0.58 mmol) in THF (5.0 mL) and NH3 (11 mL) was 

added Na (4 mmol) portionwise to sustain a blue solution at -40 °C for the required time. Distribution between a saturated 

solution of NI-hCl and diethyl ether followed by evaporation of the organic extracts gave the crude product, b. Determined 

by integration of the IH NMR spectra of the crude products, c. Ratio of products with only the C(8)=C(9) double bond 

reduced (red.) and products with both this double bond and the aromatic ring reduced (overrod.). 

The a-face in compounds 1, 2 and 4 is screened by the bulky ketal grouping, while the 13-face is 

blocked by the C(13) methyl group. In compound 1, the 13-face is furthermore partially screened by the ester 
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group; this explains the complex mixture of products obtained on reduction of I and resulting from both or- 

and 13-protonation at C(8) as well as from extensive aromatic ring reduction. The C(14) ester group in 2 is 

likely pseudoaxial (as it is in the crystal 7) and its influence, combined with that of the ketal group, causes a 

relatively slow, but reasonably efficient protonation from the I~-face at C(8). Compared to the reduction of 2, 

that of alcohol 4 is significantly faster (see entries 1 and 2 in Table 1) and the major product has the ct-H(8) 

configuration. This is clearly best explained by an intramolecular proton donation by the ct-CH2OH 

grouping.l°'l i 

This postulate is strongly supported by the results of the Na/NH 3 reduction of alcohol 6, obtained by 

LAH treatment of ester 1, In contrast to the slow and nonselective Birch reduction of 1, alcohol 6 gave a 

quantitative yield of 7 in a very fast reaction (Scheme 1, Table 1, entry 3). The stereochemistry of 7 was 

established by X-ray crystallography and spectroscopy. 12 Since the two substrates, I and 6, possess identical 

stereochemistry, the pronounced difference in both the rate and the selectivity of the two reductions is best 

explained by the beneficial presence of the hydroxyl group. 

In conclusion, the results obtained with the two alcohols, 4 and 6, show that the direction of the first 

protonation during the Birch reduction of the styrene double bond can be controlled by a suitably situated 

hydroxyl group, while a comparison with the results obtained with ester 1 and 2 leaves no doubt that this 

hydroxyl group causes a marked acceleration of the reduction. 
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